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Abstract
Sampling gear selects for specific sizes of fish, which may bias length-frequency distributions that are commonly

used to assess population size structure, recruitment patterns, growth, and survival. To properly correct for sampling
biases caused by gear and other sources, length-frequency distributions need to be corrected for imperfect detection.
We describe a method for adjusting length-frequency distributions when capture and recapture probabilities are
a function of fish length, temporal variation, and capture history. The method is applied to a study involving the
removal of Smallmouth Bass Micropterus dolomieu by boat electrofishing from a 38.6-km reach on the Yampa River,
Colorado. Smallmouth Bass longer than 100 mm were marked and released alive from 2005 to 2010 on one or more
electrofishing passes and removed on all other passes from the population. Using the Huggins mark–recapture model,
we detected a significant effect of fish total length, previous capture history (behavior), year, pass, year × behavior,
and year × pass on capture and recapture probabilities. We demonstrate how to partition the Huggins estimate of
abundance into length frequencies to correct for these effects. Uncorrected length frequencies of fish removed from
Little Yampa Canyon were negatively biased in every year by as much as 88% relative to mark–recapture estimates for
the smallest length-class in our analysis (100–110 mm). Bias declined but remained high even for adult length-classes
(≥200 mm). The pattern of bias across length-classes was variable across years. The percentage of unadjusted counts
that were below the lower 95% confidence interval from our adjusted length-frequency estimates were 95, 89, 84, 78,
81, and 92% from 2005 to 2010, respectively. Length-frequency distributions are widely used in fisheries science and
management. Our simple method for correcting length-frequency estimates for imperfect detection could be widely
applied when mark–recapture data are available.

Length-frequency distributions are widely used to describe
fish population structure and in selecting harvest regulations
(Gulland and Rosenberg 1992; Hilborn and Walters 1992;
Neumann and Allen 2007). However, the size structure of a
sample may not accurately represent population size structure

*Corresponding author: john.hawkins@colostate.edu
Received January 7, 2013; accepted July 16, 2013

because of bias related to gear configuration and the timing
and location of sampling (Beamesderfer and Rieman 1988). For
instance, gill nets and electrofishing are known to be highly
size selective for many species (Dolan and Miranda 2003; Fin-
stad and Berg 2004; Scharf et al. 2009). Clearly, the accurate
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CORRECTING LENGTH–FREQUENCY DISTRIBUTIONS 1157

estimation of population size structure requires an unbiased
sample of all size-classes.

Standardized sampling may reduce the influence of biases as-
sociated with sampling (Bonar and Hubert 2002; Miranda and
Dolan 2003; Bonar et al. 2009). However, while standardization
of gear, sampling effort, and other factors affecting catch may
facilitate comparison among studies, it does not directly address
biases associated with environmental variation or the sampling
method. For instance, in studies involving electrofishing in lotic
systems, variation in river discharge likely has a substantial ef-
fect on capture rates due to its relation to turbidity and water
conductivity (Speas et al. 2004; Martinez and Kolz 2013). Out-
fitting electrofishing boats with identical electrofishing equip-
ment would allow for a more reliable comparison among ar-
eas sampled but would not address any size-selective sampling
bias associated with the electrofishing gear itself. Gear-specific
size bias could be addressed empirically by sampling popu-
lations with known size structure (Bodine and Shoup 2010);
however, in most field settings it will be necessary to estimate
capture and recapture probabilities using mark–recapture data.
Estimating detection probabilities provides a robust method to
evaluate the factors affecting catch rates and allows correction
of the measureable bias caused by not only the gear but also
environmental variation associated with the timing and loca-
tion of sampling. Adjusting for these biases provides length-
frequency estimates that better represent true population size
structure.

While it is well established that heterogeneity in capture
probabilities among sampled individuals will lead to underes-
timates of population abundance (White et al. 1982; Huggins
1989, 1991; Borchers et al. 2002; Williams et al. 2002), we
could find only two references that corrected for this bias in
length-frequency distributions (Willis et al. 1985; Beamesderfer
and Rieman 1988). An informal literature search (Web of
Science) using the key words length, frequency, distribution,
and fish resulted in 782 matches. We reviewed about 10%
of these studies, and all inferences in each study were based
on uncorrected length-frequency distributions. Without correct-
ing for size selectivity, a source of heterogeneity in detec-
tion probabilities, estimates of length frequency (size structure)
will be biased (Willis et al. 1985; Beamesderfer and Rieman
1988).

We describe a method for adjusting length-frequency dis-
tributions when capture probabilities are a function of fish
length and other effects using electrofishing data from a Small-
mouth Bass Micropterus dolomieu removal study in the upper
Colorado River basin. A primary interest of basin managers was
the effect of removal on the size structure of the Smallmouth
Bass population over time. To evaluate these effects, we de-
veloped a method to correct length-frequency distributions for
temporal, behavioral, and size-related heterogeneity in capture
and recapture probabilities. We were motivated by research sug-
gesting that electrofishing is size selective and by the wide use
of electrofishing to sample freshwater fish populations in North

America (Dolan and Miranda 2003; Snyder 2003; Bonar et al.
2009).

METHODS
Smallmouth Bass are a widely distributed piscivore and pop-

ular sport fish in North America. In the Yampa River of western
Colorado, Smallmouth Bass are an invasive, nonnative predator
that threatens the native fish assemblage (Hawkins et al. 2009).
Since 2004, removal of Smallmouth Bass has been a priority
on the Yampa River, including at our study site in Little Yampa
Canyon, a 38.6-km (24-mi) reach located 160.9 river kilometers
(100 mi) upstream of the confluence of the Green and Yampa
rivers. For our analyses, we focused on boat electrofishing mark–
recapture and removal data collected in this reach from 2005 to
2010.

Electrofishing gear and sampling protocols used in our study
were consistent among all years and followed the recommen-
dations of Guy et al. (2009). Electrofishing gear was deployed
in two aluminum johnboats (5 m × 2.4 m) equipped with 95-
or 115-hp outboard jet motors. Electrodes consisted of paired,
half-submerged, 22.9-cm-diameter, stainless-steel spherical an-
odes suspended from the bow on fiberglass poles. The boat hull
served as a cathode and was cleaned periodically to remove ox-
idation. One boat used a Smith-Root GPP 5.0 control box with
integral generator. Anodes were extended 3.3 m from the bow
and spaced 2.3 m apart. The other boat used a Coffelt VVP-15 or
a Smith-Root VVP-15b control box with a single-phase, 240-V,
5,000-W generator. Anodes were extended 3.6 m from the bow
and spaced 2.4 m apart. The GPP 5.0 control unit was set for
pulsed DC, high range, 60 pulses per second, and duty cycle
was adjusted between 20% and 50% of range. The VVP-15 or
VVP-15b control boxes were set for pulsed DC, 600 V, 40%
pulse width, 60 pulses per second, and current was adjusted
between 4 and 7 amps. The GPP duty cycle and VVP amper-
age were adjusted depending on fish response with the goal of
eliciting forced swimming towards the anode. Duration of effort
was obtained from a timer on each electrofishing unit.

Boat electrofishing occurred from April through mid-July,
starting within a week after water temperatures exceeded 10◦C
and ending after discharge declined below 28.3 cubic me-
ters per second (U.S. Geological Survey, Yampa River gauge
#09251000), at which point boat navigation was considered
unsafe. The 38.6-km study site was divided into 48 0.8-km sec-
tions. We electrofished 9.6 km of river (both shorelines) each
day during daylight hours. Each complete sweep (38.6 km) of
the study site is referred to as a pass. Passes are equivalent
to sampling occasions in the capture–mark–recapture analysis.
The number of passes increased over the study from 4 to 11,
reflecting increased priority in Smallmouth Bass removal. An
interval of 0–11 d elapsed between passes.

Boat operators were trained for at least 2 years in river navi-
gation. One netter was deployed within each electrofishing boat
and was sufficient to capture all fish. Each electrofishing boat
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1158 BRETON ET AL.

was positioned near shore and moved in a downstream direction
parallel to the shoreline at a speed similar to the current, except
in high velocity areas with exposed boulders, where the boat was
positioned at a slight angle to the shoreline facing upstream with
the motor used to maintain position while moving backwards
downstream. A third boat was used to process fish. Captured
fish were placed in a live well with fresh oxygenated water and
processed at the downstream end of each section. Fish length
was measured to the nearest millimeter of total length (length;
Neumann et al. 2012). Fish were marked and released alive on
one or more marking passes each year with a uniquely num-
bered, model FD–94, anchor tag (Floy Tag and Manufacturing,
Seattle, Washington). On nonmarking passes (all other passes),
marked and unmarked Smallmouth Bass were removed from
the river and either euthanized or translocated to off-channel
areas (Hawkins et al. 2009). The only exception was in 2005
when Little Yampa Canyon was used to evaluate the effects
of Smallmouth Bass removal on native fish populations in this
reach. Little Yampa Canyon was split into a nonremoval (lower
19.3 km) and removal reach (upper 19.3 km), and all Small-
mouth Bass caught on nonmarking passes were returned to the
river in the nonremoval reach and euthanized or translocated to
off-channel areas in the removal reach.

We used R statistical computing environment, the R package
RMark, and Program MARK (White and Burnham 1999; White
et al. 2001; Laake and Rexstad 2011; R Development Core
Team 2011) to fit the Little Yampa Canyon dataset to the Hug-
gins closed population, capture–mark–recapture model (Hug-
gins 1989, 1991). We assumed demographic and geographic
closure among passes within a year. Demographic closure (no
births or deaths) was not an issue because water temperatures
preclude Smallmouth Bass growth and reproduction this time
of year, and natural mortality was minimal (e.g., very little
fishing pressure) over our sampling periods. Tag recoveries in
reaches directly above and below Little Yampa Canyon rarely
occurred during sampling (Hawkins et al. 2009), evidence that
geographic closure was also closely met. Integrating hundreds
of groups, such as a group for each length bin in our analysis
(250 groups; more below), was accommodated using RMark
(Laake and Rexstad 2011), which is an R package (R Devel-
opment Core Team 2011) that combines the model fitting and
estimation features of Program MARK (RMark calls the op-
timization component of Program Mark, mark.exe) with the
flexible programming environment of R. We provide additional
details in the Appendix, and complete details are available in
Laake and Rexstad (2011).

Parameters included in the Huggins model are initial capture
and recapture probabilities, p and c, respectively (Huggins 1989,
1991). Abundance (N) is conditioned out of the likelihood func-
tion specified by the model, allowing individual covariates such
as length to be integrated because the likelihood only includes
individuals captured at least one time. Estimates of abundance
are derived from the estimates of the capture probabilities ( p̂)
using a form of the Horvitz–Thompson estimator (Horvitz and

Thompson 1952) proposed by Huggins (1989, 1991):

N̂ =
mt+1∑
i=1

1/ p̂∗
i ,

where mt + 1 is the number of unique individuals captured during
sampling and p̂∗

i is an estimate of the probability of detecting the
ith individual over all occasions. In a study with three sampling
occasions, such as three electrofishing passes, the probability of
detecting the ith individual is

p̂∗
i = 1 − [(1 − p̂1) (1 − p̂2) (1 − p̂3)],

where p̂1, p̂2, and p̂3 are detection probabilities on passes (occa-
sions) 1–3, respectively. The Huggins estimator is a summation
of 1/ p̂∗

i that is the contribution to N̂ made by each of the mt + 1

individuals in the sample.
To partition the abundance estimate (N̂ ) into length frequen-

cies adjusted for imperfect detection (N̂ jk), the 1/ p̂∗
i term is

solved for each fish and then partitioned and summed by the jth
length bin and kth year,

N̂ jk =
mt+1∑
i=1

1/ p̂∗
ijk.

Grouping by length bin and year was accomplished in RMark
before fitting the model in Program MARK using the procedure
described in the Appendix.

We included length, behavior, year, pass, year × behavior,
and year × pass effects on our capture and recapture probabil-
ities. Behavior allows initial capture probability (p) to differ
from recapture probability (c) and the year × behavior inter-
action allows the effect to vary among years. Behavior was
included in the design matrix by adding a single column and
inserting 1s in rows associated with capture probabilities and 0s
in rows associated with recapture probabilities (Lukacs 2005).
Year, pass, and year × pass interaction effects allow capture and
recapture probabilities to differ among years and electrofishing
passes.

Length was integrated into our analysis as an individual
covariate that varies on every pass for each fish. To accom-
plish this we first estimated the von Bertalanffy growth coeffi-
cients k and L∞ using a recursive finite difference equation of
the von Bertalanffy growth model (White and Brisbin 1980),
Lg

i+1 = (gi+1 − gi )k(L∞ − Lg
i ) + Lg

i , where Lg
i is the length

on growth day i and gi is the growth day; gi+1 − gi is always
equal to 1. In this analysis, we only used Smallmouth Bass that
were marked and subsequently recaptured and had an initial
capture length and a recapture length (n = 992; length range
based on initial capture length was 117–462 mm). We defined a
growth day as any day when water temperatures were ≥20◦C.
Smallmouth Bass are most active (feeding) when water tem-
peratures are in the 20–28◦C range and are inactive in water
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CORRECTING LENGTH–FREQUENCY DISTRIBUTIONS 1159

below 10–15◦C (Wallus 2008). Growth rates are very slow be-
tween inactive and preferred temperature ranges (Wallus 2008).
Water temperature data were acquired from the U.S. Geologi-
cal Survey gauge #09251000 just downstream of Little Yampa
Canyon. The von Bertalanffy model was implemented recur-
sively for each growth day between capture and recapture for
each fish. For example, for a fish that experienced 10 growth
days between capture and recapture model fitting started with
this fish’s initial capture length and initial estimates for k and
L∞. These starting parameters were then used to predict the
fish’s length on growth day 1 (Lg

1). The predicted length on
growth day 1 was then used to predict length on growth day 2
(Lg

2). This recursive process was repeated until length on day
10 (recapture length) was predicted. The relationship between
the predicted length and the actual recapture length was mod-
eled using the NLIN procedure in SAS Version 9.2 (SAS 2008;
White and Brisbin 1980) and k and L∞ were fit to minimize the
nonlinear least squares based on the Gauss-Newton algorithm.

Using the von Bertalanffy growth coefficients, we estimated
the total length of all fish on all passes preceding and following
initial capture with the equation L p

i+1, L p
i−1 = (n)k̂(L̂∞ − L p

i )
+ L p

i , where k̂ and L̂∞ are estimates of the von Bertalanffy
growth coefficients, L p

i is length on pass i, and n is the number
of growth days (defined above) between L p

i and subsequent
pass L p

i+1 or L p
i and previous pass L p

i−1. If a fish was captured
on the first pass its length was predicted for all subsequent
passes (L p

i+1), if it was captured on the last pass its length was
predicted for all previous passes (L p

i−1), and if it was caught on
an intermediate pass its length was predicted in both directions.

We assessed the biological and statistical significance of
length, behavior, year, pass, year × behavior, and year × pass
effects on our capture and recapture probabilities using Akaike
information criterion adjusted for small sample size (AICc),
AICc weights, and odds ratios (Neter et al. 1996; Burnham and
Anderson 2002). We adopted the rules of thumb proposed by
Burnham and Anderson (2002, page 70) for determining em-
pirical support for each model in our set: all models within 2
AICc units were considered top models with substantial empir-
ical support, those within 4–7 AICc units had considerably less
empirical support, and those above 10 AICc units had essentially

none. We estimated percent relative bias using

b̂ias = C − Â

Â
× 100

to quantify the differences between our unadjusted length-
frequency counts (C) and adjusted counts ( Â) from our mark–
recapture analysis. We also calculated the proportion of the
unadjusted counts that were less than the lower 95% confidence
interval of our adjusted counts. We calculated proportional size
distribution using the established stock length for Smallmouth
Bass of 180 mm and 280 mm as the quality length (Gabelhouse
et al. 1984; Guy et al. 2007; Neumann et al. 2012). We used
the formula from above to calculate percent relative bias us-
ing unadjusted proportional size distribution (C) and adjusted
proportional size distribution ( Â).

RESULTS
Despite consistent electrofishing effort among passes and

years (Table 1), the numbers of fish captured by pass varied
(Table 2). Environmental and sampling effects responsible for
variability in the number of fish captured on each pass is ac-
counted for by pass, year, and pass × year factors described
below. Estimates of the von Bertalanffy growth coefficient k
and the asymptotic length L∞ used to estimate fish total length
before and after initial capture were 0.0038 (95% confidence
limits = 0.0032, 0.0043) and 458.8 (95% confidence limits =
425, 492.6), respectively. The predicted and actual recapture
lengths were highly correlated (linear regression: r2 = 0.998,
slope = 1.003).

The capture–mark–recapture model including all main ef-
fects and interactions acquired 100% of the AICc weight. The
length effect was significant (β = 0.0095; 95% confidence lim-
its = 0.0088, 0.0101; logit scale). Based on odds ratios of the
length effect, electrofishing crews were 2.6 times more likely
to capture or recapture a 200-mm fish than a 100-mm fish and
6.7 times more likely to capture or recapture a 300-mm fish
than a 100-mm fish. The biological significance of the other
main effects and interactions in our top model can be visualized

TABLE 1. Hours of electrofishing effort by pass and year from Little Yampa Canyon, Yampa River, Colorado, during 2005–2010.

Pass

Year 1 2 3 4 5 6 7 8 9 10 11 Total

2005 46.7 36.8 33.0 32.1 148.6
2006 29.1 32.4 37.4 30.3 27.8 28.2 25.8 210.8
2007 25.3 37.6 24.7 32.4 11.4 28.1 15.5 17.7 192.6
2008 36.2 46.8 48.3 35.3 38 38.3 52.2 295.1
2009 19.2 23.3 21.1 27.9 32.9 34.4 32.4 28.6 28.0 22.8 30.2 300.8
2010 29.1 22.5 30.6 29.7 36.5 31.9 36.1 28.8 9.2 30.5 284.5
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1160 BRETON ET AL.

TABLE 2. Number of Smallmouth Bass ≥100 mm captured by pass and year from Little Yampa Canyon, Yampa River, Colorado, during 2005–2010.

Pass

Year 1 2 3 4 5 6 7 8 9 10 11 Total captured Total marked

2005 407 575 494 564 2,040 1,136
2006 270 329 618 159 192 352 145 2,065 548
2007 145 335 230 192 101 303 215 114 1,635 133
2008 251 266 466 474 241 304 756 2,758 250
2009 26 38 19 220 420 448 320 154 162 145 527 2,479 220
2010 103 12 85 196 466 380 180 256 59 420 2,157 292

by comparing plots of capture (p) and recapture (c) probabilities
across years (Figure 1). For example, the substantial difference
in capture and recapture probabilities on the same pass within a
year is a function of the behavior effect (β = 0.55; 95% confi-
dence limits = 0.1660, 0.9406; logit scale). Changes in detection
probability across passes (e.g., 2008) demonstrate the biolog-
ical significance of variation in detection probability that is a
function of pass. Comparing plots across years demonstrates
the biological significance of variation in detection probability
that is a function of year.

Uncorrected length frequencies of fish removed from Little
Yampa Canyon were negatively biased in every year, particu-
larly for smaller length-classes (Figure 2). Estimates of percent
relative bias suggested that unadjusted length-frequency counts
were biased by as much as –88% relative to our mark–recapture
estimates for the smallest length-class (100–110 mm; Figure 3).
Relative bias declined but remained high even for adult length-
classes (≥200 mm); bias was zero for only the largest length-
classes considered, those longer than about 400 mm. The pattern
of percent bias across length bins was variable across years. The
lowest bias between unadjusted and adjusted counts occurred
in 2008 and the highest in 2005 (Figure 3). The percentage of
unadjusted counts that were below the lower 95% confidence
interval from our adjusted length-frequency estimates were 95,
89, 84, 78, 81, and 92% from 2005 to 2010, respectively. The
corrected length frequencies yielded a higher proportional size
distribution in every year and the percent relative bias varied
from 12% to 35% (Figure 2).

DISCUSSION
We demonstrated that length frequencies are sensitive to vari-

ation in detection probability caused by variation in electrofish-
ing efficiency. Efficiency in our study was influenced by fish
length, annual variation (year), temporal variation within a year
(pass), whether a fish had been captured previously (behavior),
and interactions (year × behavior and year × pass). Uncorrected
length frequencies underestimated size structure and the bias
was most pronounced for smaller size-classes.

Our analyses indicate that detection probability is an im-
portant consideration when assessing fish length frequencies;
not adjusting for detection probability could contribute to mis-
interpretation of fisheries data. For example, adjusted length
frequencies in 2006 clearly indicate substantial recruitment of
100–150-mm length-classes, an insight that would go unde-
tected without adjusting for detection probability (Figure 2). Al-
though Smallmouth Bass in the Yampa River are an undesirable
invasive predator and not managed as a fishery, it is informative
to use our length-frequency data to calculate a proportional size
distribution. The corrected length frequencies yielded a higher
proportional size distribution in every year, and the percent rel-
ative bias varied from 12% to 35% (Figure 2). Clearly, using
length-frequency data not adjusted for imperfect detection can
result in erroneous conclusions regarding population structure
and dynamics with implications for management.

One suggestion to reduce the influence of sampling biases is
to standardize gear configuration, sampling effort, and timing
of sampling (Bonar et al. 2009), and recent research has made
substantial contributions to standardizing electrofishing equip-
ment to reduce bias and facilitate comparisons among studies
(Miranda 2005, 2009; Martinez and Kolz 2009). We agree that
standardization will reduce bias associated with sampling; how-
ever, it will not eliminate it. For instance, even though our
sampling was standardized and consistent over time, we found
substantial variation in capture probabilities among years and
passes. Although we did not analyze the specific causes of inter-
annual and among-pass variation, these are likely due to envi-
ronmental differences, such as river discharge. Changes in dis-
charge are usually associated with changes in turbidity, which
would influence water conductivity and possibly the ability to
see and net fish. Despite attempts to standardize gear and other
sampling protocols such as timing of sampling, variation in
capture efficiency will likely remain a source of bias in length
frequencies with significant implications for managers.

Our focus on electrofishing was motivated by the ubiquity
of this sampling technique in North America and studies that
suggest electrofishing detection probabilities are a function of
fish length (Dolan and Miranda 2003; Snyder 2003; Bonar et al.
2009; Scharf et al. 2009). However, we suspect that many other
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CORRECTING LENGTH–FREQUENCY DISTRIBUTIONS 1161

gear types, including nets of varying types and mesh sizes, are
also susceptible to variation in detection probability caused by
variation in fish length (Willis et al. 1985; Beamesderfer and
Rieman 1988; Finstad and Berg 2004; Colombo et al. 2008).
Without correction, these other gear types would likely produce
biased length-frequency distributions, with the direction and
magnitude of the bias dependent on the gear, species, and other
environmental factors associated with gear efficiency.

Length-frequency distributions are widely used in fisheries
science to describe population structure and to define legal har-
vest quotas and sizes (Hilborn and Walters 1992; Neumann and
Allen 2007; Quist et al. 2009; Annala and Eayrs 2010; Haddon
2011). Given the wide use of length-frequency distributions in
fisheries science, we suggest that more mark–recapture stud-
ies be conducted to quantitatively assess bias associated with
factors influencing capture and recapture probability. Our study

FIGURE 1. Estimates of Smallmouth Bass capture (p) and recapture (c) probabilities as a function of year, pass, behavior, length, year × pass, and year × behavior
interactions from Little Yampa Canyon, Yampa River, Colorado, in 2005–2010. Error bars are 95% confidence intervals.
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1162 BRETON ET AL.

FIGURE 1. Continued.

suggests that dynamic ecosystems, such as the Yampa River,
that have substantial changes in flow, turbidity, and temperature
among sampling events and years will have significant bias in
length frequencies associated with these environmental factors.
In our study, variation in detection probabilities occurred despite
significant efforts to standardize gear configuration and train
sampling crews. We suggest caution when inferring population
dynamics from length-frequency data collected in these situa-
tions and ideally mark–recapture studies should be conducted

to quantitatively assess bias associated with factors influencing
capture and recapture probabilities. In less temporally dynamic
ecosystems, length-frequency bias may be less important. For
instance, if environmental variation is temporally predictable,
then sampling consistently during the same season may be suf-
ficient to make annual length-frequency comparisons possible.
However, more quantitative mark–recapture studies will need
to be done to assess this approach or to establish if a sim-
pler correction may be available in these situations. We feel that
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FIGURE 2. Length-frequency distributions of Smallmouth Bass corrected for length, behavior, year, pass, year × behavior, and year × pass effects on capture
and recapture probabilities (white bars) and uncorrected length frequencies (black bars) from an electrofishing mark–recapture and removal study in Little Yampa
Canyon, Yampa River, Colorado, during 2005–2010. Error bars are asymmetric, lognormal, 95% confidence intervals. Note that the frequency scale is different
in 2008 and 2009 relative to all other years. Also provided (top left corner, each plot) is the proportional size distribution (stock length, 180 mm; quality length,
280 mm) for the unadjusted counts, adjusted counts, and the percent relative bias between unadjusted and adjusted counts.

FIGURE 3. Estimates of percent relative bias of the unadjusted count relative to the estimated length-frequency (adjusted count) from our mark–recapture
analysis; unadjusted counts were always less than or equal to the adjusted counts. For example, the unadjusted count of 100–110-mm Smallmouth Bass from 2005
underestimated our adjusted count by 88%.
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our analytical approach for correcting bias in length frequencies
could be widely applied when mark–recapture data are available
and could answer fundamental questions regarding population
dynamics of size-structured populations.
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APPENDIX: RMARK ADDITIONAL DETAILS
Initially, we converted an encounter history input file we

developed for the Program MARK interface into an RMark
dataframe using the following:

LYC=convert.inp(“C:/path/mark file name.inp,”group.df=data.
frame(stage=rep(c(“SA,”“A”),6),syear=c(rrep(“2005”,2),
rep(“2006”,2),rep(“2007”,2),rep(“2008”,2),rep(“2009”,2),
rep(“2010”,2))),covariates=c(“L1”,“L2”,“L3”,“L4”,“L5”,
“L6”,“L7”,“L8”,“L9”,“L10”,“L11”,“Length Bin”),use.
comments=FALSE).

The dataframe name is LYC, referring to Little Yampa
Canyon. Within this dataframe are the group and covariate in-
formation and data path. At this point we have identified groups
as unique combinations of stage (SA = subadult; A = adult) and
sample year (syear), 2005–2011. Our list of covariates is fish
length on passes 1–11 and 10-mm length bin. The “rep” refers to
repeat and “c” to concatenate; these are R functions. There were
12 numeric group columns in our MARK input file, 2 columns
for each year starting with 2005. Within a pair of year columns,
the first column identifies the frequency of subadults and the
second adults. RMark collapses the group columns down to a
single group column and populates each cell with the appropri-
ate group, such as SA2005 (i.e., subadult in 2005).

Our LYC dataframe fulfills the data argument in process.data.
Other arguments in this function include the data type (“hug-
gins”), time intervals between sampling occasions, first year of
the study, and number of mixtures. In the group argument below,
we have identified that we want to group by sample year and
stage:

LYC.huggins=process.data(LYC,model=“Huggins,”begin.
time=2005,mixtures=1,time.intervals=c(1,1,1,1,1,1,1,1,
1,1), groups=c(“syear,”“stage”)).

To group by 10-mm length bins and sample year we changed
the group argument to the following: groups=c(“syear,”
“Length Bin”). We named our processed data LYC.huggins to
make explicit the source of the data and data type.

Next, we specified an RMark function called make.
design.data: LYC.ddl=make.design.data(LYC.huggins).

The data argument is fulfilled by LYC.huggins. Our name
for these design data, LYC.ddl, follows an RMark naming
convention—ddl refers to “design data list” (Laake and Rexstad
2011). Next we specified parameters that we wanted to fix to
zero (not shown), identified the PIM structure that we needed
to build our model (not shown), and stored a vector of values
called “initial” to start our optimization (not shown; see Laake
and Rexstad 2011 for more details). Lastly, we incorporated all
of these steps into the function called mark:

LYC.huggins.M.full=mark(LYC.huggins,LYC.ddl, model=
“full,” model.parameters=list(p=p.full.fix.shared),output=
FALSE, initial=initial),

where LYC.huggins.M.full is the name we’ve given to this
RMark object. Our name integrates the source of the design
data (LYC.huggins), “M” refers to model, and “full” refers to
a model with all main effects and interactions previously de-
scribed. Our process data, LYC.huggins, and our design data,
LYC.ddl, fulfill data arguments in the mark function. The PIM
structure is specified by model.parameters. In this case, the full
effects model with fixed parameters and many effects shared
across p and c (see Laake and Rexstad 2011 for more details).
Output prints mark.exe results to the R console unless it is set
to false, and initial is a vector of values used to start the opti-
mization in mark.exe. Estimates of abundances and frequencies
output by mark.exe are provided with asymmetric, lognormal,
95% confidence intervals. These incorporate mt + 1 to avoid re-
porting a lower interval that is less than the number of individuals
sampled.
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